Telegram Group & Telegram Channel
Что такое отчёт о классификации (classification report)? Как его интерпретировать?

По сути, отчёт о классификации — это сводка о производительности модели-классификатора, представляющая различные метрики. Вот эти метрики:

🔹Точность (Precision) — отношение истинно положительных предсказаний к общему числу предсказанных положительных.
Precision = TP/(TP+FP)
🔹Полнота (Recall) — отношение истинно положительных предсказаний к общему числу фактических положительных.
Recall = TP / (TP + FN)
🔹F1-мера — гармоническое среднее точности и полноты.
F1-мера = 2 * (Точность * Полнота) / (Точность + Полнота)

где,
TP = Истинно положительный
TN = Истинно отрицательный
FP = Ложноположительный
FN = Ложноотрицательный

Отчёт о классификации можно создать, например, с помощью библиотеки scikit-learn, используя функцию classification_report. В такой отчёт также включён показатель support, который указывает на количество фактических вхождений класса в наборе данных.

#машинное_обучение



tg-me.com/ds_interview_lib/260
Create:
Last Update:

Что такое отчёт о классификации (classification report)? Как его интерпретировать?

По сути, отчёт о классификации — это сводка о производительности модели-классификатора, представляющая различные метрики. Вот эти метрики:

🔹Точность (Precision) — отношение истинно положительных предсказаний к общему числу предсказанных положительных.
Precision = TP/(TP+FP)
🔹Полнота (Recall) — отношение истинно положительных предсказаний к общему числу фактических положительных.
Recall = TP / (TP + FN)
🔹F1-мера — гармоническое среднее точности и полноты.
F1-мера = 2 * (Точность * Полнота) / (Точность + Полнота)

где,
TP = Истинно положительный
TN = Истинно отрицательный
FP = Ложноположительный
FN = Ложноотрицательный

Отчёт о классификации можно создать, например, с помощью библиотеки scikit-learn, используя функцию classification_report. В такой отчёт также включён показатель support, который указывает на количество фактических вхождений класса в наборе данных.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/260

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Telegram today rolling out an update which brings with it several new features.The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations.

Библиотека собеса по Data Science | вопросы с собеседований from in


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA